On Fairness of Medical Image Classification with Multiple Sensitive Attributes via Learning Orthogonal Representations

Wenlong Deng, Yuan Zhong, Qi Dou, Xiaoxiao Li

Mitigating the discrimination of machine learning models has gained increasing attention in medical image analysis. However, rare works focus on fair treatments for patients with multiple sensitive demographic ones, which is a crucial yet challenging problem for real-world clinical applications. In this paper, we propose a novel method for fair representation learning with respect to multi-sensitive attributes. We pursue the independence between target and multi-sensitive representations by achieving orthogonality in the representation space. Concretely, we enforce the column space orthogonality by keeping target information on the complement of a low-rank sensitive space. Furthermore, in the row space, we encourage feature dimensions between target and sensitive representations to be orthogonal. The effectiveness of the proposed method is demonstrated with extensive experiments on the CheXpert dataset. To our best knowledge, this is the first work to mitigate unfairness with respect to multiple sensitive attributes in the field of medical imaging.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment