Living Images: A Recursive Approach to Computing the Structural Beauty of Images or the Livingness of Space

Bin Jiang, Chris de Rijke

Any image is perceived subconsciously as a coherent structure (or whole) with two contrast substructures: figure and ground. The figure consists of numerous auto-generated substructures with an inherent hierarchy of far more smalls than larges. Through these substructures, the structural beauty of an image (L) can be computed by the multiplication of the number of substructures (S) and their inherent hierarchy (H). This definition implies that the more substructures, the more living or more structurally beautiful, and the higher hierarchy of the substructures, the more living or more structurally beautiful. This is the non-recursive approach to the structural beauty of images or the livingness of space. In this paper we develop a recursive approach, which derives all substructures of an image (instead of its figure) and continues the deriving process for those decomposable substructures until none of them are decomposable. All of the substructures derived at different iterations (or recursive levels) together constitute a living structure; hence the notion of living images. We applied the recursive approach to a set of images and found that (1) the number of substructures of an image is far lower (3 percent on average) than the number of pixels and the centroids of the substructures can effectively capture the skeleton or saliency of the image; (2) all the images have the recursive levels more than three, indicating that they are indeed living images; (3) no more than 2 percent of the substructures are decomposable; (4) structural beauty can be measured by the recursively defined substructures, as well as their decomposable subsets. The recursive approach is proved to be more robust than the non-recursive approach. The recursive approach and the non-recursive approach both provide a powerful means to study the livingness or vitality of space in cities and communities.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment