CodeTalker: Speech-Driven 3D Facial Animation with Discrete Motion Prior

Jinbo Xing, Menghan Xia, Yuechen Zhang, Xiaodong Cun, Jue Wang, Tien-Tsin Wong

Speech-driven 3D facial animation has been widely studied, yet there is still a gap to achieving realism and vividness due to the highly ill-posed nature and scarcity of audio-visual data. Existing works typically formulate the cross-modal mapping into a regression task, which suffers from the regression-to-mean problem leading to over-smoothed facial motions. In this paper, we propose to cast speech-driven facial animation as a code query task in a finite proxy space of the learned codebook, which effectively promotes the vividness of the generated motions by reducing the cross-modal mapping uncertainty. The codebook is learned by self-reconstruction over real facial motions and thus embedded with realistic facial motion priors. Over the discrete motion space, a temporal autoregressive model is employed to sequentially synthesize facial motions from the input speech signal, which guarantees lip-sync as well as plausible facial expressions. We demonstrate that our approach outperforms current state-of-the-art methods both qualitatively and quantitatively. Also, a user study further justifies our superiority in perceptual quality.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment