Sharp preasymptotic error bounds for the Helmholtz $h$-FEM

Jeffrey Galkowski, Euan A. Spence

In the analysis of the $h$-version of the finite-element method (FEM), with fixed polynomial degree $p$, applied to the Helmholtz equation with wavenumber $k\gg 1$, the $\textit{asymptotic regime}$ is when $(hk)^p C_{\rm sol}$ is sufficiently small and the sequence of Galerkin solutions are quasioptimal; here $C_{\rm sol}$ is the norm of the Helmholtz solution operator, normalised so that $C_{\rm sol} \sim k$ for nontrapping problems. The $\textit{preasymptotic regime}$ is when $(hk)^{2p}C_{\rm sol}$ is sufficiently small, and (for physical data) one expects the relative error of the Galerkin solution to be controllably small. In this paper, we prove the natural error bounds in the preasymptotic regime for the variable-coefficient Helmholtz equation in the exterior of a Dirichlet, or Neumann, or penetrable obstacle (or combinations of these) and with the radiation condition approximated either by a radial perfectly-matched layer (PML) or an impedance boundary condition. Previously, such bounds for $p>1$ were only available for Dirichlet obstacles with the radiation condition approximated by an impedance boundary condition. Our result is obtained via a novel generalisation of the "elliptic-projection" argument (the argument used to obtain the result for $p=1$) which can be applied to a wide variety of abstract Helmholtz-type problems.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment