DeMT: Deformable Mixer Transformer for Multi-Task Learning of Dense Prediction

Yangyang Xu ang Yibo Yang, Lefei Zhang

Convolution neural networks (CNNs) and Transformers have their own advantages and both have been widely used for dense prediction in multi-task learning (MTL). Most of the current studies on MTL solely rely on CNN or Transformer. In this work, we present a novel MTL model by combining both merits of deformable CNN and query-based Transformer for multi-task learning of dense prediction. Our method, named DeMT, is based on a simple and effective encoder-decoder architecture (i.e., deformable mixer encoder and task-aware transformer decoder). First, the deformable mixer encoder contains two types of operators: the channel-aware mixing operator leveraged to allow communication among different channels ($i.e.,$ efficient channel location mixing), and the spatial-aware deformable operator with deformable convolution applied to efficiently sample more informative spatial locations (i.e., deformed features). Second, the task-aware transformer decoder consists of the task interaction block and task query block. The former is applied to capture task interaction features via self-attention. The latter leverages the deformed features and task-interacted features to generate the corresponding task-specific feature through a query-based Transformer for corresponding task predictions. Extensive experiments on two dense image prediction datasets, NYUD-v2 and PASCAL-Context, demonstrate that our model uses fewer GFLOPs and significantly outperforms current Transformer- and CNN-based competitive models on a variety of metrics. The code are available at https://github.com/yangyangxu0/DeMT .

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment