Efficient coordinate-descent for orthogonal matrices through Givens rotations

Uri Shalit, Gal Chechik

Optimizing over the set of orthogonal matrices is a central component in problems like sparse-PCA or tensor decomposition. Unfortunately, such optimization is hard since simple operations on orthogonal matrices easily break orthogonality, and correcting orthogonality usually costs a large amount of computation. Here we propose a framework for optimizing orthogonal matrices, that is the parallel of coordinate-descent in Euclidean spaces. It is based on {\em Givens-rotations}, a fast-to-compute operation that affects a small number of entries in the learned matrix, and preserves orthogonality. We show two applications of this approach: an algorithm for tensor decomposition that is used in learning mixture models, and an algorithm for sparse-PCA. We study the parameter regime where a Givens rotation approach converges faster and achieves a superior model on a genome-wide brain-wide mRNA expression dataset.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment