Vertex Disjoint Path in Upward Planar Graphs

Saeed Amiri, Ali Golshani, Stephan Kreutzer, Sebastian Siebertz

The $k$-vertex disjoint paths problem is one of the most studied problems in algorithmic graph theory. In 1994, Schrijver proved that the problem can be solved in polynomial time for every fixed $k$ when restricted to the class of planar digraphs and it was a long standing open question whether it is fixed-parameter tractable (with respect to parameter $k$) on this restricted class. Only recently, \cite{CMPP}.\ achieved a major breakthrough and answered the question positively. Despite the importance of this result (and the brilliance of their proof), it is of rather theoretical importance. Their proof technique is both technically extremely involved and also has at least double exponential parameter dependence. Thus, it seems unrealistic that the algorithm could actually be implemented. In this paper, therefore, we study a smaller class of planar digraphs, the class of upward planar digraphs, a well studied class of planar graphs which can be drawn in a plane such that all edges are drawn upwards. We show that on the class of upward planar digraphs the problem (i) remains NP-complete and (ii) the problem is fixed-parameter tractable. While membership in FPT follows immediately from \cite{CMPP}'s general result, our algorithm has only single exponential parameter dependency compared to the double exponential parameter dependence for general planar digraphs. Furthermore, our algorithm can easily be implemented, in contrast to the algorithm in \cite{CMPP}.

Knowledge Graph



Sign up or login to leave a comment