From Maxout to Channel-Out: Encoding Information on Sparse Pathways

Qi Wang, Joseph JaJa

Motivated by an important insight from neural science, we propose a new framework for understanding the success of the recently proposed "maxout" networks. The framework is based on encoding information on sparse pathways and recognizing the correct pathway at inference time. Elaborating further on this insight, we propose a novel deep network architecture, called "channel-out" network, which takes a much better advantage of sparse pathway encoding. In channel-out networks, pathways are not only formed a posteriori, but they are also actively selected according to the inference outputs from the lower layers. From a mathematical perspective, channel-out networks can represent a wider class of piece-wise continuous functions, thereby endowing the network with more expressive power than that of maxout networks. We test our channel-out networks on several well-known image classification benchmarks, setting new state-of-the-art performance on CIFAR-100 and STL-10, which represent some of the "harder" image classification benchmarks.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment