Optimal compression in natural gas networks: a geometric programming approach

Sidhant Misra, Michael W. Fisher, Scott Backhaus, Russell Bent, Michael Chertkov, Feng Pan

Natural gas transmission pipelines are complex systems whose flow characteristics are governed by challenging non-linear physical behavior. These pipelines extend over hundreds and even thousands of miles. Gas is typically injected into the system at a constant rate, and a series of compressors are distributed along the pipeline to boost the gas pressure to maintain system pressure and throughput. These compressors consume a portion of the gas, and one goal of the operator is to control the compressor operation to minimize this consumption while satisfying pressure constraints at the gas load points. The optimization of these operations is computationally challenging. Many pipelines simply rely on the intuition and prior experience of operators to make these decisions. Here, we present a new geometric programming approach for optimizing compressor operation in natural gas pipelines. Using models of real natural gas pipelines, we show that the geometric programming algorithm consistently outperforms approaches that mimic existing state of practice.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment