A Simple Sweep Line Algorithm for Counting Triangulations and Pseudo-triangulations

Victor Alvarez, Karl Bringmann, Saurabh Ray

Let $P\subset\mathbb{R}^{2}$ be a set of $n$ points. In this paper we show two new algorithms, one to compute the number of triangulations of $P$, and one to compute the number of pseudo-triangulations of $P$. We show that our algorithms run in time $O^{*}(t(P))$ and $O^{*}(pt(P))$ respectively, where $t(P)$ and $pt(P)$ are the largest number of triangulation paths (T-paths) and pseudo-triangulations paths (PT-paths), respectively, that the algorithms encounter during their execution. Moreover, we show that $t(P) = O^{*}(9^{n})$, which is the first non-trivial bound on $t(P)$ to be known. While there already are algorithms that count triangulations in $O^{*}\left(2^n\right)$, and $O^{*}\left(3.1414^{n}\right)$, there are sets of points where the number of T-paths is $O(2^{n})$. In such cases the algorithm herein presented could potentially be faster. Furthermore, it is not clear whether the already-known algorithms can be modified to count pseudo-triangulations so that their running times remain $O^{*}(c^n)$, for some small constant $c\in\mathbb{R}$. Therefore, for counting pseudo-triangulations (and possibly other similar structures) our approach seems better.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment