Hybrid Radio-map for Noise Tolerant Wireless Indoor Localization

Xiongfeng Geng, Yongcai Wang, Haoran Feng, Zhoufeng Chen

In wireless networks, radio-map based locating techniques are commonly used to cope the complex fading feature of radio signal, in which a radio-map is built by calibrating received signal strength (RSS) signatures at training locations in the offline phase. However, in severe hostile environments, such as in ship cabins where severe shadowing, blocking and multi-path fading effects are posed by ubiquitous metallic architecture, even radio-map cannot capture the dynamics of RSS. In this paper, we introduced multiple feature radio-map location method for severely noisy environments. We proposed to add low variance signature into radio map. Since the low variance signatures are generally expensive to obtain, we focus on the scenario when the low variance signatures are sparse. We studied efficient construction of multi-feature radio-map in offline phase, and proposed feasible region narrowing down and particle based algorithm for online tracking. Simulation results show the remarkably performance improvement in terms of positioning accuracy and robustness against RSS noises than the traditional radio-map method.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment