Co-Sparse Textural Similarity for Image Segmentation

Claudia Nieuwenhuis, Daniel Cremers, Simon Hawe, Martin Kleinsteuber

We propose an algorithm for segmenting natural images based on texture and color information, which leverages the co-sparse analysis model for image segmentation within a convex multilabel optimization framework. As a key ingredient of this method, we introduce a novel textural similarity measure, which builds upon the co-sparse representation of image patches. We propose a Bayesian approach to merge textural similarity with information about color and location. Combined with recently developed convex multilabel optimization methods this leads to an efficient algorithm for both supervised and unsupervised segmentation, which is easily parallelized on graphics hardware. The approach provides competitive results in unsupervised segmentation and outperforms state-of-the-art interactive segmentation methods on the Graz Benchmark.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment