Locating Multiple Ultrasound Targets in Chorus

Lei Song, Yongcai Wang

Ranging by Time of Arrival (TOA) of Narrow-band ultrasound (NBU) has been widely used by many locating systems for its characteristics of low cost and high accuracy. However, because it is hard to support code division multiple access in narrowband signal, to track multiple targets, existing NBU-based locating systems generally need to assign exclusive time slot to each target to avoid the signal conflicts. Because the propagation speed of ultrasound is slow in air, dividing exclusive time slots on a single channel causes the location updating rate for each target rather low, leading to unsatisfied tracking performances as the number of targets increases. In this paper, we investigated a new multiple target locating method using NBU, called UltraChorus, which is to locate multiple targets while allowing them sending NBU signals simultaneously, i.e., in chorus mode. It can dramatically increase the location updating rate. In particular, we investigated by both experiments and theoretical analysis on the necessary and sufficient conditions for resolving the conflicts of multiple NBU signals on a single channel, which is referred as the conditions for chorus ranging and chorus locating. To tackle the difficulty caused by the anonymity of the measured distances, we further developed consistent position generation algorithm and probabilistic particle filter algorithm}to label the distances by sources, to generate reasonable location estimations, and to disambiguate the motion trajectories of the multiple concurrent targets based on the anonymous distance measurements. Extensive evaluations by both simulation and testbed were carried out, which verified the effectiveness of our proposed theories and algorithms.

Knowledge Graph



Sign up or login to leave a comment