This work establishes the complexity class of several instances of the S-packing coloring problem: for a graph G, a positive integer k and a non decreasing list of integers S = (s\_1 , ..., s\_k ), G is S-colorable, if its vertices can be partitioned into sets S\_i , i = 1,... , k, where each S\_i being a s\_i -packing (a set of vertices at pairwise distance greater than s\_i). For a list of three integers, a dichotomy between NP-complete problems and polynomial time solvable problems is determined for subcubic graphs. Moreover, for an unfixed size of list, the complexity of the S-packing coloring problem is determined for several instances of the problem. These properties are used in order to prove a dichotomy between NP-complete problems and polynomial time solvable problems for lists of at most four integers.

Thanks. We have received your report. If we find this content to be in
violation of our guidelines,
we will remove it.

Ok