Moving-Horizon Dynamic Power System State Estimation Using Semidefinite Relaxation

Gang Wang, Seung-Jun Kim, Georgios B. Giannakis

Accurate power system state estimation (PSSE) is an essential prerequisite for reliable operation of power systems. Different from static PSSE, dynamic PSSE can exploit past measurements based on a dynamical state evolution model, offering improved accuracy and state predictability. A key challenge is the nonlinear measurement model, which is often tackled using linearization, despite divergence and local optimality issues. In this work, a moving-horizon estimation (MHE) strategy is advocated, where model nonlinearity can be accurately captured with strong performance guarantees. To mitigate local optimality, a semidefinite relaxation approach is adopted, which often provides solutions close to the global optimum. Numerical tests show that the proposed method can markedly improve upon an extended Kalman filter (EKF)-based alternative.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment