Bi-Factor Approximation Algorithms for Hard Capacitated $k$-Median Problems

Jarosław Byrka, Krzysztof Fleszar, Bartosz Rybicki, Joachim Spoerhase

The $k$-Facility Location problem is a generalization of the classical problems $k$-Median and Facility Location. The goal is to select a subset of at most $k$ facilities that minimizes the total cost of opened facilities and established connections between clients and opened facilities. We consider the hard-capacitated version of the problem, where a single facility may only serve a limited number of clients and creating multiple copies of a facility is not allowed. We construct approximation algorithms slightly violating the capacities based on rounding a fractional solution to the standard LP. It is well known that the standard LP (even in the case of uniform capacities and opening costs) has unbounded integrality gap if we only allow violating capacities by a factor smaller than $2$, or if we only allow violating the number of facilities by a factor smaller than $2$. In this paper, we present the first constant-factor approximation algorithms for the hard-capacitated variants of the problem. For uniform capacities, we obtain a $(2+\varepsilon)$-capacity violating algorithm with approximation ratio $O(1/\varepsilon^2)$; our result has not yet been improved. Then, for non-uniform capacities, we consider the case of $k$-Median, which is equivalent to $k$-Facility Location with uniform opening cost of the facilities. Here, we obtain a $(3+\varepsilon)$-capacity violating algorithm with approximation ratio $O(1/\varepsilon)$.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment