Multi-modal filtering for non-linear estimation

Sanket Kamthe, Jan Peters, Marc P Deisenroth

Multi-modal densities appear frequently in time series and practical applications. However, they cannot be represented by common state estimators, such as the Extended Kalman Filter (EKF) and the Unscented Kalman Filter (UKF), which additionally suffer from the fact that uncertainty is often not captured sufficiently well, which can result in incoherent and divergent tracking performance. In this paper, we address these issues by devising a non-linear filtering algorithm where densities are represented by Gaussian mixture models, whose parameters are estimated in closed form. The resulting method exhibits a superior performance on typical benchmarks.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment