A graph G is well-covered if all its maximal independent sets are of the same cardinality. Assume that a weight function w is defined on its vertices. Then G is w-well-covered if all maximal independent sets are of the same weight. For every graph G, the set of weight functions w such that G is w-well-covered is a vector space, denoted WCW(G). Let B be a complete bipartite induced subgraph of G on vertex sets of bipartition B_X and B_Y. Then B is generating if there exists an independent set S such that S \cup B_X and S \cup B_Y are both maximal independent sets of G. A relating edge is a generating subgraph in the restricted case that B = K_{1,1}. Deciding whether an input graph G is well-covered is co-NP-complete. Therefore finding WCW(G) is co-NP-hard. Deciding whether an edge is relating is co-NP-complete. Therefore, deciding whether a subgraph is generating is co-NP-complete as well. In this article we discuss the connections among these problems, provide proofs for NP-completeness for several restricted cases, and present polynomial characterizations for some other cases.

Thanks. We have received your report. If we find this content to be in
violation of our guidelines,
we will remove it.

Ok