CloudFridge: A Testbed for Smart Fridge Interactions

Thomas Sandholm, Dongman Lee, Bjorn Tegelund, Seonyeong Han, Byoungheon Shin, Byoungoh Kim

We present a testbed for exploring novel smart refrigerator interactions, and identify three key adoption-limiting interaction shortcomings of state-of-the-art smart fridges: lack of 1) user experience focus, 2) low-intrusion object recognition and 2) automatic item position detection. Our testbed system addresses these limitations by a combination of sensors, software filters, architectural components and a RESTful API to track interaction events in real-time, and retrieve current state and historical data to learn patterns and recommend user actions. We evaluate the accuracy and overhead of our system in a realistic interaction flow. The accuracy was measured to 83-88% and the overhead compared to a representative state-of-the-art barcode scanner improved by 27%. We also showcase two applications built on top of our testbed, one for finding expired items and ingredients of dishes; and one to monitor your health. The pattern that these applications have in common is that they cast the interaction as an item-recommendation problem triggered when the user takes something out. Our testbed could help reveal further user-experience centric interaction patterns and new classes of applications for smart fridges that inherently, by relying on our testbed primitives, mitigate the issues with existing approaches.

Knowledge Graph



Sign up or login to leave a comment