Energy-aware Load Balancing Policies for the Cloud Ecosystem

Ashkan Paya, Dan C. Marinescu

The energy consumption of computer and communication systems does not scale linearly with the workload. A system uses a significant amount of energy even when idle or lightly loaded. A widely reported solution to resource management in large data centers is to concentrate the load on a subset of servers and, whenever possible, switch the rest of the servers to one of the possible sleep states. We propose a reformulation of the traditional concept of load balancing aiming to optimize the energy consumption of a large-scale system: {\it distribute the workload evenly to the smallest set of servers operating at an optimal energy level, while observing QoS constraints, such as the response time.} Our model applies to clustered systems; the model also requires that the demand for system resources to increase at a bounded rate in each reallocation interval. In this paper we report the VM migration costs for application scaling.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment