Power Allocation for Energy Harvesting Transmitter with Causal Information

Zhe Wang, Vaneet Aggarwal, Xiaodong Wang

We consider power allocation for an access-controlled transmitter with energy harvesting capability based on causal observations of the channel fading state. We assume that the system operates in a time-slotted fashion and the channel gain in each slot is a random variable which is independent across slots. Further, we assume that the transmitter is solely powered by a renewable energy source and the energy harvesting process can practically be predicted. With the additional access control for the transmitter and the maximum power constraint, we formulate the stochastic optimization problem of maximizing the achievable rate as a Markov decision process (MDP) with continuous state. To efficiently solve the problem, we define an approximate value function based on a piecewise linear fit in terms of the battery state. We show that with the approximate value function, the update in each iteration consists of a group of convex problems with a continuous parameter. Moreover, we derive the optimal solution to these convex problems in closed-form. Further, we propose power allocation algorithms for both the finite- and infinite-horizon cases, whose computational complexity is significantly lower than that of the standard discrete MDP method but with improved performance. Extension to the case of a general payoff function and imperfect energy prediction is also considered. Finally, simulation results demonstrate that the proposed algorithms closely approach the optimal performance.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment