Recursive Joint Attention for Audio-Visual Fusion in Regression based Emotion Recognition

R Gnana Praveen, Eric Granger, Patrick Cardinal

In video-based emotion recognition (ER), it is important to effectively leverage the complementary relationship among audio (A) and visual (V) modalities, while retaining the intra-modal characteristics of individual modalities. In this paper, a recursive joint attention model is proposed along with long short-term memory (LSTM) modules for the fusion of vocal and facial expressions in regression-based ER. Specifically, we investigated the possibility of exploiting the complementary nature of A and V modalities using a joint cross-attention model in a recursive fashion with LSTMs to capture the intra-modal temporal dependencies within the same modalities as well as among the A-V feature representations. By integrating LSTMs with recursive joint cross-attention, our model can efficiently leverage both intra- and inter-modal relationships for the fusion of A and V modalities. The results of extensive experiments performed on the challenging Affwild2 and Fatigue (private) datasets indicate that the proposed A-V fusion model can significantly outperform state-of-art-methods.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment