Transformer with Selective Shuffled Position Embedding using ROI-Exchange Strategy for Early Detection of Knee Osteoarthritis

Zhe Wang, Aladine Chetouani, Rachid Jennane

Knee OsteoArthritis (KOA) is a prevalent musculoskeletal disorder that causes decreased mobility in seniors. The lack of sufficient data in the medical field is always a challenge for training a learning model due to the high cost of labelling. At present, deep neural network training strongly depends on data augmentation to improve the model's generalization capability and avoid over-fitting. However, existing data augmentation operations, such as rotation, gamma correction, etc., are designed based on the data itself, which does not substantially increase the data diversity. In this paper, we proposed a novel approach based on the Vision Transformer (ViT) model with Selective Shuffled Position Embedding (SSPE) and a ROI-exchange strategy to obtain different input sequences as a method of data augmentation for early detection of KOA (KL-0 vs KL-2). More specifically, we fixed and shuffled the position embedding of ROI and non-ROI patches, respectively. Then, for the input image, we randomly selected other images from the training set to exchange their ROI patches and thus obtained different input sequences. Finally, a hybrid loss function was derived using different loss functions with optimized weights. Experimental results show that our proposed approach is a valid method of data augmentation as it can significantly improve the model's classification performance.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment