Towards Mitigating ChatGPT's Negative Impact on Education: Optimizing Question Design through Bloom's Taxonomy

Saber Elsayed

The popularity of generative text AI tools in answering questions has led to concerns regarding their potential negative impact on students' academic performance and the challenges that educators face in evaluating student learning. To address these concerns, this paper introduces an evolutionary approach that aims to identify the best set of Bloom's taxonomy keywords to generate questions that these tools have low confidence in answering. The effectiveness of this approach is evaluated through a case study that uses questions from a Data Structures and Representation course being taught at the University of New South Wales in Canberra, Australia. The results demonstrate that the optimization algorithm is able to find keywords from different cognitive levels to create questions that ChatGPT has low confidence in answering. This study is a step forward to offer valuable insights for educators seeking to create more effective questions that promote critical thinking among students.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment