A Comprehensive Evaluation of the Copy Mechanism for Natural Language to SPARQL Query Generation

Samuel Reyd, Amal Zouaq, Papa Abdou Karim Karou Diallo

In recent years, the field of neural machine translation (NMT) for SPARQL query generation has witnessed a significant growth. Recently, the incorporation of the copy mechanism with traditional encoder-decoder architectures and the use of pre-trained encoder-decoders have set new performance benchmarks. This paper presents a large variety of experiments that replicate and expand upon recent NMT-based SPARQL generation studies, comparing pre-trained and non-pre-trained models, question annotation formats, and the use of a copy mechanism for non-pre-trained and pre-trained models. Our results show that either adding the copy mechanism or using a question annotation improves performances for nonpre-trained models and for pre-trained models, setting new baselines for three popular datasets.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment