ALiSNet: Accurate and Lightweight Human Segmentation Network for Fashion E-Commerce

Amrollah Seifoddini, Koen Vernooij, Timon Künzle, Alessandro Canopoli, Malte Alf, Anna Volokitin, Reza Shirvany

Accurately estimating human body shape from photos can enable innovative applications in fashion, from mass customization, to size and fit recommendations and virtual try-on. Body silhouettes calculated from user pictures are effective representations of the body shape for downstream tasks. Smartphones provide a convenient way for users to capture images of their body, and on-device image processing allows predicting body segmentation while protecting users privacy. Existing off-the-shelf methods for human segmentation are closed source and cannot be specialized for our application of body shape and measurement estimation. Therefore, we create a new segmentation model by simplifying Semantic FPN with PointRend, an existing accurate model. We finetune this model on a high-quality dataset of humans in a restricted set of poses relevant for our application. We obtain our final model, ALiSNet, with a size of 4MB and 97.6$\pm$1.0$\%$ mIoU, compared to Apple Person Segmentation, which has an accuracy of 94.4$\pm$5.7$\%$ mIoU on our dataset.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment