Interpreting Vulnerabilities of Multi-Instance Learning to Adversarial Perturbations

Yu-Xuan Zhang, Hua Meng, Xue-Mei Cao, Zhengchun Zhou, Mei Yang, Avik Ranjan Adhikary

Multi-Instance Learning (MIL) is a recent machine learning paradigm which is immensely useful in various real-life applications, like image analysis, video anomaly detection, text classification, etc. It is well known that most of the existing machine learning classifiers are highly vulnerable to adversarial perturbations. Since MIL is a weakly supervised learning, where information is available for a set of instances, called bag and not for every instances, adversarial perturbations can be fatal. In this paper, we have proposed two adversarial perturbation methods to analyze the effect of adversarial perturbations to interpret the vulnerability of MIL methods. Out of the two algorithms, one can be customized for every bag, and the other is a universal one, which can affect all bags in a given data set and thus has some generalizability. Through simulations, we have also shown the effectiveness of the proposed algorithms to fool the state-of-the-art (SOTA) MIL methods. Finally, we have discussed through experiments, about taking care of these kind of adversarial perturbations through a simple strategy. Source codes are available at https://github.com/InkiInki/MI-UAP.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment