Least Redundant Gated Recurrent Neural Network

Łukasz Neumann, Łukasz Lepak, Paweł Wawrzyński

Recurrent neural networks are important tools for sequential data processing. However, they are notorious for problems regarding their training. Challenges include capturing complex relations between consecutive states and stability and efficiency of training. In this paper, we introduce a recurrent neural architecture called Deep Memory Update (DMU). It is based on updating the previous memory state with a deep transformation of the lagged state and the network input. The architecture is able to learn to transform its internal state using any nonlinear function. Its training is stable and fast due to relating its learning rate to the size of the module. Even though DMU is based on standard components, experimental results presented here confirm that it can compete with and often outperform state-of-the-art architectures such as Long Short-Term Memory, Gated Recurrent Units, and Recurrent Highway Networks.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment