Cloud computing, offering on-demand access to computing resources through the Internet and the pay-as-you-go model, has marked the last decade with its three main service models; Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS). The lightweight nature of containers compared to virtual machines has led to the rapid uptake of another in recent years, called Containers as a Service (CaaS), which falls between IaaS and PaaS regarding control abstraction. However, when CaaS is offered to multiple independent users, or tenants, a multi-instance approach is used, in which each tenant receives its own separate cluster, which reimposes significant overhead due to employing virtual machines for isolation. If CaaS is to be offered not just at the cloud, but also at the edge cloud, where resources are limited, another solution is required. We introduce a native CaaS multitenancy framework, meaning that tenants share a cluster, which is more efficient than the one tenant per cluster model. Whenever there are shared resources, isolation of multitenant workloads is an issue. Such workloads can be isolated by Kata Containers today. Besides, our framework esteems the application requirements that compel complete isolation and a fully customized environment. Node-level slicing empowers tenants to programmatically reserve isolated subclusters where they can choose the container runtime that suits application needs. The framework is publicly available as liberally-licensed, free, open-source software that extends Kubernetes, the de facto standard container orchestration system. It is in production use within the EdgeNet testbed for researchers.