Practical Lessons on Optimizing Sponsored Products in eCommerce

Yanbing Xue, Bo Liu, Weizhi Du, Jayanth Korlimarla, Musen Men

In this paper, we study multiple problems from sponsored product optimization in ad system, including position-based de-biasing, click-conversion multi-task learning, and calibration on predicted click-through-rate (pCTR). We propose a practical machine learning framework that provides the solutions to such problems without structural change to existing machine learning models, thus can be combined with most machine learning models including shallow models (e.g. gradient boosting decision trees, support vector machines). In this paper, we first propose data and feature engineering techniques to handle the aforementioned problems in ad system; after that, we evaluate the benefit of our practical framework on real-world data sets from our traffic logs from online shopping site. We show that our proposed practical framework with data and feature engineering can also handle the perennial problems in ad systems and bring increments to multiple evaluation metrics.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment