DRIFT: A Federated Recommender System with Implicit Feedback on the Items

Theo Nommay

Nowadays there are more and more items available online, this makes it hard for users to find items that they like. Recommender systems aim to find the item who best suits the user, using his historical interactions. Depending on the context, these interactions may be more or less sensitive and collecting them brings an important problem concerning the users' privacy. Federated systems have shown that it is possible to make accurate and efficient recommendations without storing users' personal information. However, these systems use instantaneous feedback from the user. In this report, we propose DRIFT, a federated architecture for recommender systems, using implicit feedback. Our learning model is based on a recent algorithm for recommendation with implicit feedbacks SAROS. We aim to make recommendations as precise as SAROS, without compromising the users' privacy. In this report we show that thanks to our experiments, but also thanks to a theoretical analysis on the convergence. We have shown also that the computation time has a linear complexity with respect to the number of interactions made. Finally, we have shown that our algorithm is secure, and participants in our federated system cannot guess the interactions made by the user, except DOs that have the item involved in the interaction.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment