A common assumption on the deployment of safeguarding controllers on the digital platform is that high sampling frequency translates to a small violation of safety. This paper investigates and formalizes this assumption through the lens of Input-to-State Safety. From this perspective, we propose an alternative solution for maintaining safety of sample-and-hold controlled systems without any violation to the original safe set. Our approach centers around modulating the sampled control input in order to guarantee a more robust safety condition. We analyze both the time-triggered and the event-triggered sample-and-hold implementations, including the characterization of sampling frequency requirements and trigger conditions. We demonstrate the effectiveness of our approach in the context of adaptive cruise control through simulations.