Weakly Secure Summation with Colluding Users

Zhou Li, Yizhou Zhao, Hua Sun

In secure summation, $K$ users, each holds an input, wish to compute the sum of the inputs at a server without revealing any information about {\em all the inputs} even if the server may collude with {\em an arbitrary subset of users}. In this work, we relax the security and colluding constraints, where the set of inputs whose information is prohibited from leakage is from a predetermined collection of sets (e.g., any set of up to $S$ inputs) and the set of colluding users is from another predetermined collection of sets (e.g., any set of up to $T$ users). For arbitrary collection of security input sets and colluding user sets, we characterize the optimal randomness assumption, i.e., the minimum number of key bits that need to be held by the users, per input bit, for weakly secure summation to be feasible, which generally involves solving a linear program.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment