Observer-Feedback-Feedforward Controller Structures in Reinforcement Learning

Ruoqi Zhang, Per Mattson, Torbjörn Wigren

The paper proposes the use of structured neural networks for reinforcement learning based nonlinear adaptive control. The focus is on partially observable systems, with separate neural networks for the state and feedforward observer and the state feedback and feedforward controller. The observer dynamics are modelled by recurrent neural networks while a standard network is used for the controller. As discussed in the paper, this leads to a separation of the observer dynamics to the recurrent neural network part, and the state feedback to the feedback and feedforward network. The structured approach reduces the computational complexity and gives the reinforcement learning based controller an {\em understandable} structure as compared to when one single neural network is used. As shown by simulation the proposed structure has the additional and main advantage that the training becomes significantly faster. Two ways to include feedforward structure are presented, one related to state feedback control and one related to classical feedforward control. The latter method introduces further structure with a separate recurrent neural network that processes only the measured disturbance. When evaluated with simulation on a nonlinear cascaded double tank process, the method with most structure performs the best, with excellent feedforward disturbance rejection gains.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment