Learning Temporal Distribution and Spatial Correlation for Universal Moving Object Segmentation

Guanfang Dong, Chenqiu Zhao, Xichen Pan, Anup Basu

Universal moving object segmentation aims to provide a general model for videos from all types of natural scenes, as previous approaches are usually effective for specific or similar scenes. In this paper, we propose a method called Learning Temporal Distribution and Spatial Correlation (LTS) that has the potential to be a general solution for universal moving object segmentation. In the proposed approach, the distribution from temporal pixels is first learned by our Defect Iterative Distribution Learning (DIDL) network for a scene-independent segmentation. Then, the Stochastic Bayesian Refinement (SBR) Network, which learns the spatial correlation, is proposed to improve the binary mask generated by the DIDL network. Benefiting from the scene independence of the temporal distribution and the accuracy improvement resulting from the spatial correlation, the proposed approach performs well for almost all videos from diverse and complex natural scenes with fixed parameters. Comprehensive experiments on standard datasets including LASIESTA, CDNet2014, BMC, SBMI2015 and 128 real world videos demonstrate the superiority of proposed approach compared to state-of-the-art methods with or without the use of deep learning networks. To the best of our knowledge, this work has high potential to be a general solution for moving object segmentation in real world environments.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment