Resource allocation is the assignment of resources to activities that must be executed in a business process at a particular moment at run-time. While resource allocation is well-studied in other fields, such as manufacturing, there exist only a few methods in business process management. Existing methods are not suited for application in large business processes or focus on optimizing resource allocation for a single case rather than for all cases combined. To fill this gap, this paper proposes two learning-based methods for resource allocation in business processes: a deep reinforcement learning-based approach and a score-based value function approximation approach. The two methods are compared against existing heuristics in a set of scenarios that represent typical business process structures and on a complete network that represents a realistic business process. The results show that our learning-based methods outperform or are competitive with common heuristics in most scenarios and outperform heuristics in the complete network.