Can ChatGPT Reproduce Human-Generated Labels? A Study of Social Computing Tasks

Yiming Zhu, Peixian Zhang, Ehsan-Ul Haq, Pan Hui, Gareth Tyson

The release of ChatGPT has uncovered a range of possibilities whereby large language models (LLMs) can substitute human intelligence. In this paper, we seek to understand whether ChatGPT has the potential to reproduce human-generated label annotations in social computing tasks. Such an achievement could significantly reduce the cost and complexity of social computing research. As such, we use ChatGPT to re-label five seminal datasets covering stance detection (2x), sentiment analysis, hate speech, and bot detection. Our results highlight that ChatGPT does have the potential to handle these data annotation tasks, although a number of challenges remain. ChatGPT obtains an average precision 0.609. Performance is highest for the sentiment analysis dataset, with ChatGPT correctly annotating 64.9% of tweets. Yet, we show that performance varies substantially across individual labels. We believe this work can open up new lines of analysis and act as a basis for future research into the exploitation of ChatGPT for human annotation tasks.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment