Angle based dynamic learning rate for gradient descent

Neel Mishra, Pawan Kumar

In our work, we propose a novel yet simple approach to obtain an adaptive learning rate for gradient-based descent methods on classification tasks. Instead of the traditional approach of selecting adaptive learning rates via the decayed expectation of gradient-based terms, we use the angle between the current gradient and the new gradient: this new gradient is computed from the direction orthogonal to the current gradient, which further helps us in determining a better adaptive learning rate based on angle history, thereby, leading to relatively better accuracy compared to the existing state-of-the-art optimizers. On a wide variety of benchmark datasets with prominent image classification architectures such as ResNet, DenseNet, EfficientNet, and VGG, we find that our method leads to the highest accuracy in most of the datasets. Moreover, we prove that our method is convergent.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment