This paper presents the application of triangle configuration B-splines (TCB-splines) for representing and analyzing the Kirchhoff-Love shell in the context of isogeometric analysis (IGA). The Kirchhoff-Love shell formulation requires global $C^1$-continuous basis functions. The nonuniform rational B-spline (NURBS)-based IGA has been extensively used for developing Kirchhoff-Love shell elements. However, shells with complex geometries inevitably need multiple patches and trimming techniques, where stitching patches with high continuity is a challenge. On the other hand, due to their unstructured nature, TCB-splines can accommodate general polygonal domains, have local refinement, and are flexible to model complex geometries with $C^1$ continuity, which naturally fit into the Kirchhoff-Love shell formulation with complex geometries. Therefore, we propose to use TCB-splines as basis functions for geometric representation and solution approximation. We apply our method to both linear and nonlinear benchmark shell problems, where the accuracy and robustness are validated. The applicability of the proposed approach to shell analysis is further exemplified by performing geometrically nonlinear Kirchhoff-Love shell simulations of a pipe junction and a front bumper represented by a single patch of TCB-splines.