Quadratic quantum speedup in evaluating bilinear risk functions

Quadratic quantum speedup in evaluating bilinear risk functions Gabriele Agliardi, Corey O'Meara, Kavitha Yogaraj, Kumar Ghosh, Piergiacomo Sabino, Marina Fernández-Campoamor, Giorgio Cortiana, Juan Bernabé-Moreno, Francesco Tacchino, Antonio Mezzacapo, Omar Shehab

Computing nonlinear functions over multilinear forms is a general problem with applications in risk analysis. For instance in the domain of energy economics, accurate and timely risk management demands for efficient simulation of millions of scenarios, largely benefiting from computational speedups. We develop a novel hybrid quantum-classical algorithm based on polynomial approximation of nonlinear functions and compare different implementation variants. We prove a quadratic quantum speedup, up to polylogarithmic factors, when forms are bilinear and approximating polynomials have second degree, if efficient loading unitaries are available for the input data sets. We also enhance the bidirectional encoding, that allows tuning the balance between circuit depth and width, proposing an improved version that can be exploited for the calculation of inner products. Lastly, we exploit the dynamic circuit capabilities, recently introduced on IBM Quantum devices, to reduce the average depth of the Quantum Hadamard Product circuit. A proof of principle is implemented and validated on IBM Quantum systems.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment