Quantifying the robustness of deep multispectral segmentation models against natural perturbations and data poisoning

Elise Bishoff, Charles Godfrey, Myles Mckay, Eleanor Byler

In overhead image segmentation tasks, including additional spectral bands beyond the traditional RGB channels can improve model performance. However, it is still unclear how incorporating this additional data impacts model robustness to adversarial attacks and natural perturbations. For adversarial robustness, the additional information could improve the model's ability to distinguish malicious inputs, or simply provide new attack avenues and vulnerabilities. For natural perturbations, the additional information could better inform model decisions and weaken perturbation effects or have no significant influence at all. In this work, we seek to characterize the performance and robustness of a multispectral (RGB and near infrared) image segmentation model subjected to adversarial attacks and natural perturbations. While existing adversarial and natural robustness research has focused primarily on digital perturbations, we prioritize on creating realistic perturbations designed with physical world conditions in mind. For adversarial robustness, we focus on data poisoning attacks whereas for natural robustness, we focus on extending ImageNet-C common corruptions for fog and snow that coherently and self-consistently perturbs the input data. Overall, we find both RGB and multispectral models are vulnerable to data poisoning attacks regardless of input or fusion architectures and that while physically realizable natural perturbations still degrade model performance, the impact differs based on fusion architecture and input data.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment