STOAT: Structured Data to Analytical Text With Controls

Deepanway Ghosal, Preksha Nema, Aravindan Raghuveer

Recent language models have made tremendous progress in the structured data to text generation task. However, these models still give sub-optimal performance where logical inference is required to generate the descriptions. In this work, we specifically focus on analytical text generation from structured data such as tables. Building on the taxonomy proposed in (Gupta et al., 2020) we focus on controllable table to text generation for the following reasoning categories: numerical reasoning, commonsense reasoning, temporal reasoning, table knowledge, and entity knowledge. We propose STOAT model, which is table and reasoning aware, with vector-quantization to infuse the given reasoning categories in the output. We observe that our model provides 10.19%, 1.13% improvement on the PARENT metric in iToTTo and Infotabs for the analytical sentence task. We also found that our model generates 15.3% more faithful and analytical descriptions as compared to the baseline models in human evaluation. We curate and release two reasoning category annotated table-to-interesting text generation datasets based on the ToTTo (Parikh et al., 2020) and InfoTabs datasets (Gupta et al.,2020).

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment