Tune-Mode ConvBN Blocks For Efficient Transfer Learning

Kaichao You, Anchang Bao, Guo Qin, Meng Cao, Ping Huang, Jiulong Shan, MingSheng Long

Convolution-BatchNorm (ConvBN) blocks are integral components in various computer vision tasks and other domains. A ConvBN block can operate in three modes: Train, Eval, and Deploy. While the Train mode is indispensable for training models from scratch, the Eval mode is suitable for transfer learning and model validation, and the Deploy mode is designed for the deployment of models. This paper focuses on the trade-off between stability and efficiency in ConvBN blocks: Deploy mode is efficient but suffers from training instability; Eval mode is widely used in transfer learning but lacks efficiency. To solve the dilemma, we theoretically reveal the reason behind the diminished training stability observed in the Deploy mode. Subsequently, we propose a novel Tune mode to bridge the gap between Eval mode and Deploy mode. The proposed Tune mode is as stable as Eval mode for transfer learning, and its computational efficiency closely matches that of the Deploy mode. Through extensive experiments in both object detection and classification tasks, carried out across various datasets and model architectures, we demonstrate that the proposed Tune mode does not hurt the original performance while significantly reducing GPU memory footprint and training time, thereby contributing an efficient solution to transfer learning with convolutional networks.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment