Farewell to Aimless Large-scale Pretraining: Influential Subset Selection for Language Model

Xiao Wang, Weikang Zhou, Qi Zhang, Jie zhou, Songyang Gao, Junzhe Wang, Menghan Zhang, Xiang Gao, Yunwen Chen, Tao Gui

Pretrained language models have achieved remarkable success in various natural language processing tasks. However, pretraining has recently shifted toward larger models and larger data, and this has resulted in significant computational and energy costs. In this paper, we propose Influence Subset Selection (ISS) for language model, which explicitly utilizes end-task knowledge to select a tiny subset of the pretraining corpus. Specifically, the ISS selects the samples that will provide the most positive influence on the performance of the end-task. Furthermore, we design a gradient matching based influence estimation method, which can drastically reduce the computation time of influence. With only 0.45% of the data and a three-orders-of-magnitude lower computational cost, ISS outperformed pretrained models (e.g., RoBERTa) on eight datasets covering four domains.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment