GMD: Controllable Human Motion Synthesis via Guided Diffusion Models

Korrawe Karunratanakul, Konpat Preechakul, Supasorn Suwajanakorn, Siyu Tang

Denoising diffusion models have shown great promise in human motion synthesis conditioned on natural language descriptions. However, it remains a challenge to integrate spatial constraints, such as pre-defined motion trajectories and obstacles, which is essential for bridging the gap between isolated human motion and its surrounding environment. To address this issue, we propose Guided Motion Diffusion (GMD), a method that incorporates spatial constraints into the motion generation process. Specifically, we propose an effective feature projection scheme that largely enhances the coherency between spatial information and local poses. Together with a new imputation formulation, the generated motion can reliably conform to spatial constraints such as global motion trajectories. Furthermore, given sparse spatial constraints (e.g. sparse keyframes), we introduce a new dense guidance approach that utilizes the denoiser of diffusion models to turn a sparse signal into denser signals, effectively guiding the generation motion to the given constraints. The extensive experiments justify the development of GMD, which achieves a significant improvement over state-of-the-art methods in text-based motion generation while being able to control the synthesized motions with spatial constraints.

Knowledge Graph



Sign up or login to leave a comment