Target Active Speaker Detection with Audio-visual Cues

Yidi Jiang, Ruijie Tao, Zexu Pan, Haizhou Li

In active speaker detection (ASD), we would like to detect whether an on-screen person is speaking based on audio-visual cues. Previous studies have primarily focused on modeling audio-visual synchronization cue, which depends on the video quality of the lip region of a speaker. In real-world applications, it is possible that we can also have the reference speech of the on-screen speaker. To benefit from both facial cue and reference speech, we propose the Target Speaker TalkNet (TS-TalkNet), which leverages a pre-enrolled speaker embedding to complement the audio-visual synchronization cue in detecting whether the target speaker is speaking. Our framework outperforms the popular model, TalkNet on two datasets, achieving absolute improvements of 1.6\% in mAP on the AVA-ActiveSpeaker validation set, and 0.8\%, 0.4\%, and 0.8\% in terms of AP, AUC and EER on the ASW test set, respectively. Code is available at \href{https://github.com/Jiang-Yidi/TS-TalkNet/}{\color{red}{https://github.com/Jiang-Yidi/TS-TalkNet/}}.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment