Weighted Context-Free-Language Ordered Binary Decision Diagrams

Meghana Sistla, Swarat Chaudhuri, Thomas Reps

Over the years, many variants of Binary Decision Diagrams (BDDs) have been developed to address the deficiencies of vanilla BDDs. A recent innovation is the Context-Free-Language Ordered BDD (CFLOBDD), a hierarchically structured decision diagram, akin to BDDs enhanced with a procedure-call mechanism, which allows substructures to be shared in ways not possible with BDDs. For some functions, CFLOBDDs are exponentially more succinct than BDDs. Unfortunately, the multi-terminal extension of CFLOBDDs, like multi-terminal BDDs, cannot efficiently represent functions of type B^n -> D, when the function's range has many different values. This paper addresses this limitation through a new data structure called Weighted CFLOBDDs (WCFLOBDDs). WCFLOBDDs extend CFLOBDDs using insights from the design of Weighted BDDs (WBDDs) -- BDD-like structures with weights on edges. We show that WCFLOBDDs can be exponentially more succinct than both WBDDs and CFLOBDDs. We also evaluate WCFLOBDDs for quantum-circuit simulation, and find that they perform better than WBDDs and CFLOBDDs on most benchmarks. With a 15-minute timeout, the number of qubits that can be handled by WCFLOBDDs is 1,048,576 for GHZ (1x over CFLOBDDs, 256x over WBDDs); 262,144 for BV and DJ (2x over CFLOBDDs, 64x over WBDDs); and 2,048 for QFT (128x over CFLOBDDs, 2x over WBDDs).

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment