GenSpectrum Chat: Data Exploration in Public Health Using Large Language Models

Chaoran Chen, Tanja Stadler

Introduction: The COVID-19 pandemic highlighted the importance of making epidemiological data and scientific insights easily accessible and explorable for public health agencies, the general public, and researchers. State-of-the-art approaches for sharing data and insights included regularly updated reports and web dashboards. However, they face a trade-off between the simplicity and flexibility of data exploration. With the capabilities of recent large language models (LLMs) such as GPT-4, this trade-off can be overcome. Results: We developed the chatbot "GenSpectrum Chat" (https://cov-spectrum.org/chat) which uses GPT-4 as the underlying large language model (LLM) to explore SARS-CoV-2 genomic sequencing data. Out of 500 inputs from real-world users, the chatbot provided a correct answer for 453 prompts; an incorrect answer for 13 prompts, and no answer although the question was within scope for 34 prompts. We also tested the chatbot with inputs from 10 different languages, and despite being provided solely with English instructions and examples, it successfully processed prompts in all tested languages. Conclusion: LLMs enable new ways of interacting with information systems. In the field of public health, GenSpectrum Chat can facilitate the analysis of real-time pathogen genomic data. With our chatbot supporting interactive exploration in different languages, we envision quick and direct access to the latest evidence for policymakers around the world.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment