Look-back Decoding for Open-Ended Text Generation

Nan Xu, Chunting Zhou, Asli Celikyilmaz, Xuezhe Ma

Given a prefix (context), open-ended generation aims to decode texts that are coherent, which don't abruptly drift from previous topics, and informative, which don't suffer from undesired repetitions. In this paper, we propose Look-back, an improved decoding algorithm that leverages the Kullback-Leibler divergence to track the distribution distance between current and historical decoding steps. Thus Look-back can automatically predict potential repetitive phrase and topic drift, and remove tokens that may cause the failure modes, restricting the next token probability distribution within a plausible distance to the history. We perform decoding experiments on document continuation and story generation, and demonstrate that Look-back is able to generate more fluent and coherent text, outperforming other strong decoding methods significantly in both automatic and human evaluations.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment