Reanalyzing L2 Preposition Learning with Bayesian Mixed Effects and a Pretrained Language Model

Jakob Prange, Man Ho Ivy Wong

We use both Bayesian and neural models to dissect a data set of Chinese learners' pre- and post-interventional responses to two tests measuring their understanding of English prepositions. The results mostly replicate previous findings from frequentist analyses and newly reveal crucial interactions between student ability, task type, and stimulus sentence. Given the sparsity of the data as well as high diversity among learners, the Bayesian method proves most useful; but we also see potential in using language model probabilities as predictors of grammaticality and learnability.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment